Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Acetyl-1,3-dicyclohexylurea

Wolfgang Imhof

Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University, August-Bebel-Strasse 2, 07743 Jena, Germany Correspondence e-mail: Wolfgang.Imhof@uni-jena.de

Received 4 September 2007; accepted 5 September 2007

Key indicators: single-crystal X-ray study; T = 183 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.108; data-to-parameter ratio = 20.2.

The title compound, $C_{15}H_{26}N_2O_2$, was prepared from dicyclohexylcarbodiimide and acetic acid. The crystal structure is established by strong $N-H\cdots O$ interactions between the amide H atom and the acetyl O atom, producing dimeric units which are connected into infinite chains by additional C- $H\cdots O$ hydrogen bonds.

Related literature

For related literature, see: Ball *et al.* (1990); Banerjee *et al.* (2000); Bechtel *et al.* (1979); Behrens & Rehder (2006); Chérioux *et al.* (2002); Orea Flores *et al.* (2006); Gallagher *et al.* (1999); Goel *et al.* (2003); Ishida *et al.* (1983); Mazumdar *et al.* (2003); Perollier *et al.* (1999); Salas-Coronado *et al.* (2001); Toniolo *et al.* (1990); Detar & Silverstein (1966*a,b*); Khorana (1953); Ogawa *et al.* (1990); Ramsden & Rose (1997); Smart *et al.* (1960); Smith *et al.* (1958); Wei *et al.* (2006).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{26}N_{2}O_{2}\\ M_{r}=266.38\\ Monoclinic, P2_{1}/n\\ a=10.6174 \ (4) \ \text{\AA}\\ b=14.2451 \ (9) \ \text{\AA}\\ c=10.8862 \ (6) \ \text{\AA}\\ \beta=111.795 \ (3)^{\circ} \end{array}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: none 5982 measured reflections $V = 1528.80 (14) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 183 (2) K $0.3 \times 0.2 \times 0.2 \text{ mm}$

3494 independent reflections 2103 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 173 parameters $wR(F^2) = 0.108$ H-atom parameters constrainedS = 0.95 $\Delta \rho_{max} = 0.17$ e Å⁻³3494 reflections $\Delta \rho_{min} = -0.18$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O2^{i}$ C12 - H12B \cdots O1^{ii}	0.88 0.99	2.04 2.57	2.907 (3) 3.469 (3)	171 151
Symmetry codes: (i) $-x$, -y + 1, -z +	1; (ii) $-x + \frac{1}{2}$, y	$v - \frac{1}{2}, -z + \frac{3}{2}.$	

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1990); software used to prepare material for publication: *SHELXL97* and *XP*.

The author thanks the Deutsche Forschungsgemeinschaft for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2203).

References

Ball, R. G., Brown, R. S. & Bennet, A. J. (1990). Acta Cryst. C46, 2491–2493.

- Banerjee, R., Maji, S. K. & Banerjee, A. (2000). Acta Cryst. C56, 1120–1121. Bechtel, F., Bideau, J.-P. & Cotrait, M. (1979). Cryst. Struct. Commun. 8, 815–
- 818. Behrens, A. & Rehder, D. (2006). *Inorg. Chem. Commun.* 9, 708–711.
- Chérioux, F., Therrien, B., Stoeckli-Evans, H. & Süss-Fink, G. (2002). Acta
- *Cryst.* E58, 027–029. Detar, D. F. & Silverstein, R. (1966*a*). *J. Am. Chem. Soc.* 88, 1013–1019.
- Detar, D. F. & Silverstein, R. (1966b). J. Am. Chem. Soc. 88, 1020–1023.
- Gallagher, J. F., Kenny, P. T. M. & Sheehy, M. J. (1999). Acta Cryst. C55, 1607– 1610.
- Goel, V. K., Dey, S., Baxia, A. P. & Singh, T. P. (2003). Z. Kristallogr. New Cryst. Struct. 218, 57–58.
- Ishida, T., Yamashita, M., Takai, H. & Inoue, M. (1983). Acta Cryst. C39, 1294– 1297.
- Khorana, H. G. (1953). Chem. Rev. 53, 145-166.
- Mazumdar, P. A., Kundu, S. K., Das, A. K., Bertolasi, V. & Pramanik, A. (2003). J. Chem. Res. pp. 502–503.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Ogawa, T., Miyazaki, K. & Suzuki, H. (1990). Chem. Lett. pp. 1651-1654.
- Orea Flores, M. L., Galindo Guzmán, A., Gnecco Medina, D. & Bernès, S. (2006). Acta Cryst. E62, o2922-o2923.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Perollier, C., Pecault, J., Ramasseul, R., Bau, R. & Marchon, J.-C. (1999). *Chem. Commun.* pp. 1597–1598.
- Ramsden, C. A. & Rose, H. L. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2319–2327.
- Salas-Coronado, R., Vasquez-Badillo, A., Medina-Garcia, M., Garcia-Colon, J. G., Nöth, H., Contreras, R. & Flores-Parra, A. (2001). J. Mol. Struct. THEOCHEM, 543, 259–275.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1990). XP. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Smart, N. A., Young, G. T. & Williams, M. W. (1960). J. Chem. Soc. pp. 3902– 3912.

- Smith, M., Moffat, J. G. & Khorana, H. G. (1958). J. Am. Chem. Soc. 80, 6204–6212.
- Toniolo, C., Valle, G., Crisma, M., Moretto, V., Izdebski, J., Pelka, J. & Schneider, C. H. (1990). *Helv. Chim. Acta*, 73, 626–634.
- Wei, K.-L., Wu, C.-H., Huang, W.-H., Lin, J. J. & Dai, S. A. (2006). *Macromolecules*, **39**, 12–14.

supplementary materials

Acta Cryst. (2007). E63, o4036-o4037 [doi:10.1107/S1600536807043656]

1-Acetyl-1,3-dicyclohexylurea

W. Imhof

Comment

Acylated *N*-aryl- and *N*-alkylurea derivatives have been investigated, *e.g.* as intermediates in the synthesis of amidines and heterocyclic compounds derived therefrom, as well as precursors for poly(amide-imide)s (Wei *et al.* 2006, Ramsden & Rose 1997, Khorana 1953, Smith *et al.* 1958, Detar & Silverstein 1966*a*,b, Ogawa *et al.* 1990, Smart *et al.* 1960). Although quite a number of acylated dicyclohexylurea derivatives have been structurally characterized (Ball *et al.* 1990, Banerjee *et al.* 2000, Bechtel *et al.* 1979, Behrens & Rehder 2006, Chérioux *et al.* 2002, Orea Flores *et al.* 2006, Gallagher *et al.* 1999, Goel *et al.* 2003, Ishida *et al.* 1983, Mazumdar *et al.* 2003, Perollier *et al.* 1999, Salas-Coronado *et al.* 2001, Toniolo *et al.* 1990), the structure of the most simple derivative, with an acetyl group, has not yet been reported.

The molecular structure of the title compound (Fig. 1) shows the two urea nitrogen atoms N1 and N2 having a planar geometry, with an angle of 69.00 (6)° between [C6, N1, H1N, C7] and [C7, N2, C8, C14]. The bond lengths and angles have expected values. The crystal structure is determined by hydrogen bonds. The strongest interactions are observed between the amide N1—H1N group and the acetyl oxygen atom (H···O 2.035 Å). Two of these hydrogen bonds link two molecules, forming a dimeric cyclic unit. These dimers are linked to produce infinite chains by additional C—H···O bonds from one of the cyclohexyl substituents to the carbonyl oxygen atom of the urea unit (Fig. 2, Table 1).

Experimental

1.96 g Dicyclohexylcarbodiimide (9.51 mmol) were stirred at room temperature for 5 h together with 5 ml glacial acetic acid and 1 mol% (110 mg) [Pd(PPh₃)₄] in 10 ml THF. On standing at -20° for three days, colorless crystals of the title compound were produced; these were identified by their melting point and ¹H NMR spectrum (Ogawa *et al.* 1990, Smart *et al.* 1960). ¹³C NMR (CDCl₃, 293 K) [p.p.m.]: 23.9 (CH₃), 24.6 (CH₂), 25.2 (CH₂), 25.4 (CH₂), 26.2 (CH₂), 30.7 (CH₂), 32.6 (CH₂), 55.6 (CH), 56.4 (CH), 153.9 (C=O), 170.9 (C=O).

Refinement

Hydrogen atoms were placed in idealized positions and refined using a riding model, with distances of N—H = 0.88 Å and C—H = 0.98-1.00 Å; $U_{iso}(H) = 1.5U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2. Crystal structure of the title compound. Dashed lines indicate hydrogen bonds.

1-Acetyl-1,3-dicyclohexyurea

Crystal data	
$C_{15}H_{26}N_2O_2$	$F_{000} = 584$
$M_r = 266.38$	$D_{\rm x} = 1.157 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P2yn	Cell parameters from 5982 reflections
a = 10.6174 (4) Å	$\theta = 2.5 - 27.5^{\circ}$
b = 14.2451 (9) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 10.8862 (6) Å	T = 183 (2) K
$\beta = 111.795 \ (3)^{\circ}$	Cuboid, colourless
$V = 1528.80 (14) \text{ Å}^3$	$0.3 \times 0.2 \times 0.2 \text{ mm}$
Z = 4	

Data collection

Nonius KappaCCD diffractometer	2103 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.030$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 183(2) K	$\theta_{\min} = 2.5^{\circ}$
phi–scan, ω–scan	$h = -13 \rightarrow 13$
Absorption correction: none	$k = -16 \rightarrow 18$
5982 measured reflections	$l = -14 \rightarrow 14$
3494 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_0^2) + (0.0565P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.95	$(\Delta/\sigma)_{max} < 0.001$
3494 reflections	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$

173 parameters

 $\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.06204 (15)	0.63488 (12)	0.96118 (14)	0.0552 (4)
H1A	0.1613	0.6441	0.9905	0.083*
H1B	0.0443	0.5666	0.9597	0.083*
C2	0.01037 (16)	0.68244 (14)	1.05960 (14)	0.0639 (5)
H2A	0.0525	0.6522	1.1473	0.096*
H2B	0.0376	0.7493	1.0690	0.096*
C3	-0.14216 (16)	0.67575 (12)	1.01465 (16)	0.0576 (4)
H3A	-0.1688	0.6092	1.0153	0.086*
H3B	-0.1730	0.7108	1.0769	0.086*
C4	-0.20999 (14)	0.71539 (13)	0.87715 (14)	0.0584 (4)
H4A	-0.1919	0.7837	0.8789	0.088*
H4B	-0.3093	0.7064	0.8478	0.088*
C5	-0.15866 (13)	0.66796 (12)	0.77887 (14)	0.0571 (4)
H5A	-0.1864	0.6012	0.7692	0.086*
H5B	-0.2006	0.6984	0.6913	0.086*
C6	-0.00597 (12)	0.67416 (9)	0.82379 (12)	0.0348 (3)
H6	0.0198	0.7418	0.8251	0.052*
N1	0.03787 (10)	0.62479 (8)	0.72894 (10)	0.0384 (3)
H1N	-0.0132	0.5789	0.6825	0.058*
C7	0.15079 (12)	0.64555 (9)	0.70914 (12)	0.0350 (3)
01	0.23242 (9)	0.70596 (7)	0.76652 (9)	0.0460 (3)
N2	0.17255 (10)	0.58545 (7)	0.61161 (10)	0.0348 (3)
C8	0.28978 (12)	0.52058 (9)	0.65772 (12)	0.0345 (3)
H8	0.2645	0.4638	0.5997	0.052*
С9	0.41480 (12)	0.56302 (10)	0.64319 (14)	0.0420 (3)
H9A	0.4454	0.6183	0.7020	0.063*
H9B	0.3927	0.5840	0.5508	0.063*
C10	0.52742 (14)	0.48970 (11)	0.67961 (15)	0.0526 (4)
H10A	0.4983	0.4363	0.6173	0.079*
H10B	0.6095	0.5176	0.6717	0.079*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C11	0.56119 (15)	0.45453 (11)	0.82013 (16)	0.0591 (4)
H11A	0.6302	0.4043	0.8395	0.089*
H11B	0.6001	0.5066	0.8831	0.089*
C12	0.43630 (15)	0.41690 (10)	0.83923 (15)	0.0526 (4)
H12A	0.4601	0.4000	0.9334	0.079*
H12B	0.4056	0.3591	0.7859	0.079*
C13	0.32072 (14)	0.48780 (10)	0.79900 (13)	0.0434 (3)
H13A	0.3463	0.5423	0.8597	0.065*
H13B	0.2388	0.4586	0.8056	0.065*
C14	0.09682 (12)	0.59270 (9)	0.47971 (13)	0.0363 (3)
O2	0.11724 (8)	0.53978 (7)	0.39946 (9)	0.0435 (3)
C15	-0.00869 (13)	0.66818 (10)	0.43522 (13)	0.0449 (4)
H15A	-0.0302	0.6815	0.3413	0.067*
H15B	0.0259	0.7252	0.4871	0.067*
H15C	-0.0908	0.6472	0.4481	0.067*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0564 (9)	0.0703 (11)	0.0422 (8)	0.0220 (8)	0.0222 (7)	0.0044 (8)
C2	0.0658 (10)	0.0937 (14)	0.0366 (8)	0.0233 (9)	0.0240 (7)	0.0030 (9)
C3	0.0711 (10)	0.0585 (10)	0.0630 (10)	-0.0031 (8)	0.0478 (8)	-0.0074 (8)
C4	0.0411 (8)	0.0827 (12)	0.0558 (10)	0.0064 (8)	0.0230 (7)	-0.0156 (9)
C5	0.0386 (8)	0.0856 (12)	0.0474 (9)	0.0047 (8)	0.0163 (6)	-0.0181 (9)
C6	0.0381 (7)	0.0349 (7)	0.0358 (7)	-0.0018 (5)	0.0188 (5)	-0.0058 (6)
N1	0.0375 (6)	0.0437 (7)	0.0386 (6)	-0.0075 (5)	0.0193 (5)	-0.0128 (5)
C7	0.0366 (7)	0.0369 (7)	0.0336 (7)	0.0010 (6)	0.0154 (6)	-0.0016 (6)
01	0.0426 (5)	0.0449 (6)	0.0549 (6)	-0.0092 (5)	0.0233 (4)	-0.0152 (5)
N2	0.0355 (6)	0.0400 (6)	0.0324 (6)	0.0020 (5)	0.0167 (5)	-0.0031 (5)
C8	0.0382 (7)	0.0341 (7)	0.0349 (7)	-0.0003 (6)	0.0176 (5)	-0.0028 (6)
C9	0.0392 (7)	0.0458 (8)	0.0449 (8)	-0.0011 (6)	0.0204 (6)	0.0014 (7)
C10	0.0389 (7)	0.0638 (10)	0.0564 (10)	0.0041 (7)	0.0193 (6)	-0.0021 (8)
C11	0.0510 (9)	0.0614 (10)	0.0542 (10)	0.0149 (8)	0.0072 (7)	-0.0017 (8)
C12	0.0707 (10)	0.0418 (8)	0.0416 (8)	0.0095 (7)	0.0165 (7)	0.0044 (7)
C13	0.0547 (8)	0.0403 (8)	0.0404 (8)	0.0008 (7)	0.0236 (6)	0.0038 (7)
C14	0.0356 (7)	0.0400 (8)	0.0365 (7)	-0.0093 (6)	0.0170 (6)	-0.0052 (6)
O2	0.0484 (6)	0.0479 (6)	0.0368 (5)	-0.0063 (4)	0.0188 (4)	-0.0102 (4)
C15	0.0392 (7)	0.0521 (9)	0.0402 (8)	0.0009 (6)	0.0111 (6)	-0.0006 (7)

Geometric parameters (Å, °)

C1—C6	1.5065 (19)	N2—C8	1.4802 (15)
C1—C2	1.5311 (19)	C8—C9	1.5194 (17)
C1—H1A	0.9900	C8—C13	1.5219 (18)
C1—H1B	0.9900	С8—Н8	1.0000
C2—C3	1.511 (2)	C9—C10	1.5250 (19)
C2—H2A	0.9900	С9—Н9А	0.9900
C2—H2B	0.9900	С9—Н9В	0.9900
C3—C4	1.509 (2)	C10—C11	1.521 (2)

С3—НЗА	0.9900	C10—H10A	0.9900
С3—Н3В	0.9900	C10—H10B	0.9900
C4—C5	1.5268 (19)	C11—C12	1.514 (2)
C4—H4A	0.9900	C11—H11A	0.9900
C4—H4B	0.9900	C11—H11B	0.9900
C5—C6	1.5121 (17)	C12—C13	1.5227 (18)
С5—Н5А	0.9900	C12—H12A	0.9900
С5—Н5В	0.9900	C12—H12B	0.9900
C6—N1	1.4608 (15)	C13—H13A	0.9900
С6—Н6	1.0000	C13—H13B	0.9900
N1—C7	1.3278 (15)	C14—O2	1.2325 (15)
N1—H1N	0.8800	C14—C15	1.4977 (18)
C7—O1	1.2165 (15)	C15—H15A	0.9800
C7—N2	1.4477 (15)	C15—H15B	0.9800
N2	1.3645 (16)	С15—Н15С	0.9800
C6—C1—C2	111.49 (12)	N2—C8—C9	111.93 (10)
C6—C1—H1A	109.3	N2-C8-C13	111.91 (10)
C2—C1—H1A	109.3	C9—C8—C13	110.99 (11)
C6—C1—H1B	109.3	N2—C8—H8	107.2
C2—C1—H1B	109.3	С9—С8—Н8	107.2
H1A—C1—H1B	108.0	С13—С8—Н8	107.2
C3—C2—C1	111.40 (13)	C8—C9—C10	109.35 (12)
C3—C2—H2A	109.3	С8—С9—Н9А	109.8
C1—C2—H2A	109.3	С10—С9—Н9А	109.8
C3—C2—H2B	109.3	С8—С9—Н9В	109.8
C1—C2—H2B	109.3	С10—С9—Н9В	109.8
H2A—C2—H2B	108.0	Н9А—С9—Н9В	108.3
C4—C3—C2	110.92 (12)	C11—C10—C9	110.88 (12)
С4—С3—НЗА	109.5	C11—C10—H10A	109.5
С2—С3—НЗА	109.5	C9—C10—H10A	109.5
С4—С3—Н3В	109.5	C11-C10-H10B	109.5
С2—С3—Н3В	109.5	C9—C10—H10B	109.5
НЗА—СЗ—НЗВ	108.0	H10A-C10-H10B	108.1
C3—C4—C5	111.49 (13)	C12—C11—C10	111.31 (12)
C3—C4—H4A	109.3	C12—C11—H11A	109.4
С5—С4—Н4А	109.3	C10-C11-H11A	109.4
C3—C4—H4B	109.3	C12—C11—H11B	109.4
С5—С4—Н4В	109.3	C10-C11-H11B	109.4
H4A—C4—H4B	108.0	H11A—C11—H11B	108.0
C6—C5—C4	111.49 (11)	C11—C12—C13	112.26 (12)
С6—С5—Н5А	109.3	C11—C12—H12A	109.2
C4—C5—H5A	109.3	C13—C12—H12A	109.2
C6—C5—H5B	109.3	C11—C12—H12B	109.2
С4—С5—Н5В	109.3	C13—C12—H12B	109.2
H5A—C5—H5B	108.0	H12A—C12—H12B	107.9
N1	111.22 (11)	C12—C13—C8	110.05 (11)
N1—C6—C5	109.15 (10)	C12—C13—H13A	109.7
C1—C6—C5	111.13 (11)	С8—С13—Н13А	109.7
N1—C6—H6	108.4	C12—C13—H13B	109.7

supplementary materials

61 66 116	100.4	C0 C12 U12D	100.7
CIC6H6	108.4	С8—С13—Н13В	109.7
С5—С6—Н6	108.4	H13A—C13—H13B	108.2
C7—N1—C6	123.46 (10)	O2—C14—N2	120.64 (12)
C7—N1—H1N	118.3	O2—C14—C15	121.14 (12)
C6—N1—H1N	118.3	N2-C14-C15	118.19 (11)
O1—C7—N1	126.04 (12)	C14—C15—H15A	109.5
O1—C7—N2	121.17 (11)	C14—C15—H15B	109.5
N1—C7—N2	112.76 (11)	H15A—C15—H15B	109.5
C14—N2—C7	122.34 (11)	C14—C15—H15C	109.5
C14—N2—C8	119.79 (10)	H15A—C15—H15C	109.5
C7—N2—C8	117.62 (9)	H15B—C15—H15C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1N····O2 ⁱ	0.88	2.04	2.907 (3)	171
C12—H12B····O1 ⁱⁱ	0.99	2.57	3.469 (3)	151
Summatry adday (i) $u = u + 1 = -1$; (ii) $u + 1$	(2 + 1/2) = +2/2			

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1/2, y-1/2, -z+3/2.

Fig. 1

